Effective rate constant for nanostructured heterogeneous catalysts.
نویسندگان
چکیده
There is a great deal of interest in the use of nanostructured heterogeneous catalysts, particularly those based on expensive precious metals, in order to maximise the surface to volume ratio of the catalyst, potentially reducing the cost without sacrificing performance. When there is an abundance of reactants available, the effective reactivity will depend on the surface density of the catalytically active sites. However, under diffusion-limited conditions, catalytically active sites may compete for reactants, potentially leading to diminishing returns from the use of nanostructures. In this paper we apply a mathematical homogenization approach to investigate the effect of scale and patterning on the effective activity of catalytic sites on a heterogeneous catalyst operating under diffusion-limited conditions. We test these theoretical results numerically using Monte Carlo simulations, and show that in the continuum limit the theory works well. In particular, in the limit where the mean free path is much less than the scale of patterning of catalytically active sites, the effective rate constant is found to be equal to the area-weighted harmonic mean of the rate constants on the surface. However, as the length scale of the patterns becomes comparable to the mean free path length, the simulations show that the effective activity of the system can exceed the theoretical limit suggested by the continuum theory.
منابع مشابه
Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics
This review is focused on the strategies and designs of magnetic nanostructured catalysts showing the enhanced and sustainable catalytic performances for the heterogeneous reduction of nitoaromatics. Magnetic catalysts have the benefits of easy recovery and reuse after the completion of the reactions and green chemical processes. Magnetic separation, among the various procedures for removing ca...
متن کاملBiodiesel: A Cost-effective Fuel Using Waste Materials
The main disadvantage of biodiesel is its high price. The price of biodiesel depends on various factors such as the price of oil, methanol, catalyst, and labor. Among dif-ferent economic factors, oil accounts for the largest share of input costs of biodiesel production. In this study, first, suitable heterogeneous catalysts were identified for biodiesel production. Several studies were carried ...
متن کاملSynthesis and Characterization of Nanostructured CuO/CeO2 Catalysts via Ultrasound Assisted Techniques used for Selective Oxidation of CO
متن کامل
Application of the Electro-Fenton Process Including Fe+2 and Fe+3 Heterogeneous Catalysts to Remove Ciprofloxacin from Aqueous Solutions
Background and Objectives: Ciprofloxacin is an emerging and degradable pollutant that cannot be efficiently removed by common water and wastewater treatment processes. Electro-Fenton process is one of the most effective processes for the treatment of these compounds. Hence, the present study aimed to remove ciprofloxacin by Electro-Fenton method with heterogeneous catalysts, Fe+2 and Fe+3. Mat...
متن کاملDesign and use of nanostructured single-site heterogeneous catalysts for the selective transformation of fine chemicals.
Nanostructured single-site heterogeneous catalysts possess the advantages of classical solid catalysts, in terms of easy recovery and recycling, together with a defined tailored chemical and steric environment around the catalytically active metal site. The use of inorganic oxide supports with selected shape and porosity at a nanometric level may have a relevant impact on the regio- and stereoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 45 شماره
صفحات -
تاریخ انتشار 2015